• For any query, contact us at
  • +91-9872993883
  • +91-8283824812
  • info@ris-ai.com

function diff_im = anisodiff(im, num_iter, delta_t, kappa, option)
fprintf('Removing noise\n');
fprintf('Filtering Completed !!');

% Convert input image to double.
im = double(im);
% PDE (partial differential equation) initial condition.
diff_im = im;
% Center pixel distances.
dx = 1;
dy = 1;

dd = sqrt(2);
% 2D convolution masks - finite differences.
hN = [0 1 0; 0 -1 0; 0 0 0];
hS = [0 0 0; 0 -1 0; 0 1 0];

hE = [0 0 0; 0 -1 1; 0 0 0];
hW = [0 0 0; 1 -1 0; 0 0 0];
hNE = [0 0 1; 0 -1 0; 0 0 0];
hSE = [0 0 0; 0 -1 0; 0 0 1];
hSW = [0 0 0; 0 -1 0; 1 0 0];
hNW = [1 0 0; 0 -1 0; 0 0 0];

% Anisotropic diffusion.
for t = 1:num_iter

% Finite differences. [imfilter(.,.,'conv') can be replaced by conv2(.,.,'same')]
nablaN = imfilter(diff_im,hN,'conv');
nablaS = imfilter(diff_im,hS,'conv');
nablaW = imfilter(diff_im,hW,'conv');

nablaE = imfilter(diff_im,hE,'conv');
nablaNE = imfilter(diff_im,hNE,'conv');
nablaSE = imfilter(diff_im,hSE,'conv');
nablaSW = imfilter(diff_im,hSW,'conv');
nablaNW = imfilter(diff_im,hNW,'conv');
% Diffusion function.
if option == 1

cN = exp(-(nablaN/kappa).^2);
cS = exp(-(nablaS/kappa).^2);
cW = exp(-(nablaW/kappa).^2);
cE = exp(-(nablaE/kappa).^2);
cNE = exp(-(nablaNE/kappa).^2);
cSE = exp(-(nablaSE/kappa).^2);
cSW = exp(-(nablaSW/kappa).^2);

cNW = exp(-(nablaNW/kappa).^2);
elseif option == 2
cN = 1./(1 + (nablaN/kappa).^2);
cS = 1./(1 + (nablaS/kappa).^2);

cW = 1./(1 + (nablaW/kappa).^2);
cE = 1./(1 + (nablaE/kappa).^2);
cNE = 1./(1 + (nablaNE/kappa).^2);
cSE = 1./(1 + (nablaSE/kappa).^2);
cSW = 1./(1 + (nablaSW/kappa).^2);
cNW = 1./(1 + (nablaNW/kappa).^2);
end

% Discrete PDE solution.
diff_im = diff_im + ...
delta_t*(...
(1/(dy^2))*cN.*nablaN + (1/(dy^2))*cS.*nablaS + ...
(1/(dx^2))*cW.*nablaW + (1/(dx^2))*cE.*nablaE + ...

(1/(dd^2))*cNE.*nablaNE + (1/(dd^2))*cSE.*nablaSE + ...
(1/(dd^2))*cSW.*nablaSW + (1/(dd^2))*cNW.*nablaNW );
end