Check Marijuana Legal Illegal Status with Python
Marijuana is the most frequently used illicit substance in the United States. In this model , we will Check Marijuana Legal Illegal Status with Python code.
We firstly import necessary library for this project
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split
Now we read CSV file in which data for legal and illegal marijuana states
dataset = pd.read_csv('state_marijuana_legalization_dataset.csv') X = dataset.iloc[:, :5] y = dataset.iloc[:, -1] print(X)
bachelors_degrees coastline_length population_density forest_cover \
0 37.9 31 618 37.9
1 30.8 750 222 17.0
2 28.0 6640 1 30.4
3 36.8 130 1218 39.5
4 37.6 96 741 54.7
5 40.5 192 871 52.5
6 34.9 13 148 77.5
7 36.3 112 212 60.7
8 31.4 840 251 17.8
9 32.9 157 107 40.7
10 38.1 0 52 17.5
11 33.7 0 68 28.9
12 31.1 0 36 8.9
13 30.0 28 485 30.0
14 34.2 127 420 50.9
15 27.7 0 10 1.0
16 25.7 0 6 9.2
17 32.3 0 231 11.5
18 31.9 40 1021 50.8
19 36.0 0 67 75.7
20 28.6 0 286 55.3
21 27.6 367 105 7.0
22 27.8 0 106 45.2
23 29.3 0 24 1.8
24 26.7 0 55 5.4
25 30.8 296 41 38.8
26 31.0 0 36 2.8
27 27.0 0 11 3.1
28 23.0 0 26 0.5
29 29.0 228 43 89.0
30 27.5 0 60 4.8
31 28.8 100 177 64.2
32 26.9 0 175 51.2
33 26.1 0 284 28.9
34 24.1 0 184 18.9
35 27.1 0 88 30.3
36 29.5 0 7 20.6
37 27.3 1350 378 42.4
38 24.1 0 57 14.2
39 25.9 0 20 31.8
40 28.4 301 206 59.9
41 24.9 0 160 52.9
42 25.8 187 162 63.8
43 22.5 397 108 49.2
44 26.3 0 17 5.6
45 22.3 0 112 48.6
46 23.5 53 95 70.6
47 19.2 0 76 77.2
48 21.1 0 57 55.1
49 20.7 44 63 61.9
per_capita_income
0 36338
1 29736
2 33062
3 37288
4 39373
5 36593
6 34691
7 34052
8 30441
9 31841
10 32357
11 32638
12 24877
13 30488
14 33095
15 33071
16 29698
17 30417
18 30830
19 29178
20 29220
21 27125
22 28213
23 27446
24 28361
25 27646
26 27870
27 26959
28 25773
29 27978
30 25715
31 25615
32 26613
33 26937
34 25140
35 26126
36 25989
37 26582
38 25229
39 23938
40 25774
41 24922
42 24596
43 24800
44 23683
45 23684
46 23606
47 22714
48 22883
49 21036
Using train set method by RandomForest model for classification
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) model = RandomForestClassifier() model.fit(X_train, y_train)
/home/webtunix/.local/lib/python3.5/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)
Take input value from user
print("ENTER THE VALUES TO CLASSIFY MARIJUANA IS LEGAL OR NOT: ") a=int(input("bachelors_degrees: ")) b=int(input("coastline_length: ")) c=int(input("population_density: ")) d=int(input("forest_cover: ")) e=int(input("per_capita_income: "))
ENTER THE VALUES TO CLASSIFY MARIJUANA IS LEGAL OR NOT: bachelors_degrees: 37 coastline_length: 31 population_density: 618 forest_cover: 37 per_capita_income: 36338
y=[] y.append(a) y.append(b) y.append(c) y.append(d) y.append(e)
test = [] test.append(y)
Make empty list and append data in it.
We make another list in which we append all the input list
We predict the model by passing the list.
result = model.predict(test)
Now, we check the result. If the result is one then that state is legal for marijuana and if the result is zero then that state is ill-legal for marijuana.
if result==[1]: print("marijuana is leagal") else: print("marijuana is ill-leagal")
marijuana is leagal
We use RandomForestClassifier model because it's depend upon probability as it occur in between 0 and 1